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Types of filters

For a filter F we define P(ω)/F as the quotient algebra of the equivalence
relation defined by

A ∼ B ⇐⇒ A△B ∈ Fc ,

where Fc denotes the ideal dual to the filter F , i.e.

Fc = {I ⊆ ω : I c ∈ F}

.

Types of filters

• A filter F supports a measure if F = {A : µ(A) = 1} for some
probability measure µ on ω.

• A filter F is ccc if P(ω)/F is ccc.
• A filter F is non-meager if it is non-meager as a subset of 2ω

• A filter F is Fréchet if it contains all cofinite subsets of ω.
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Ultrafilers and filters supporting measure

Theorem

If F is an ultrafilter, then F supports measure.

Proof

Take any ultrafilter U and measure µ on ω such that:
• µ(A) = 0 iff A /∈ U
• µ(A) = 1 iff A ∈ U

With this measure we can write U as {A : µ(A) = 1}, so U is a filter
supporting measure.
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Ultrafilers and filters supporting measure

Proposition

There exists a filter that supports measure but which is not an ultrafilter.

Proof

Take a non-principal ultrafilter U . Let

F = {A : lim
n→U

|A ∩ n|
n

= 1}.

Then, the family F is a filter, but clearly not an ultrafilter.
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Filters supporting measure and ccc filters

Proposition

Every filter F supporting measure is ccc.

Proof

Since F supports measure, then there exists µ such that

F = {A : µ(A) = 1}.

So we have that the elements of the dual ideal are the sets of measure 0.
Suppose, towards the contradiction, that we can find an uncountable
family (Aα)α<ω1 of subsets of ω such that µ(Aα△Aβ) = 0 for each α ̸= β
and µ(Aα) > 0 for each α < ω1. Without loss of generality, passing to an
uncountable subfamily if needed, we may assume that there is a > 0 such
that µ(Aα) > a for each α. This is a contradiction as
µ(A0 ∪ · · · ∪ Am) > 1 for m > 1/a.
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Filters supporting measure and ccc filters

Theorem

There is a filter which is ccc but does not support a measure.

Proof

First, note that there is a complete Boolean algebra A of size c which is
ccc but which does not support a measure (i.e. there is no measure µ such
that µ(A) > 0 for each nonzero element A of A), e.g. the Gaifman algebra.
We claim that there is a homomorphism φ : P(ω) → A which is onto.
This follows from the Fichtencholz-Kantorowicz theorem saying that there
is an independent family (Xα)α<c of subsets of ω. We can define a
function f : {Xα : α < c} → A which is onto. Then, by Sikorski extension
theorem, we can extend f to a homomorphism φ : P(ω) → A.
Let F be the filter dual to the kernel of φ. Then P(ω)/F is isomorphic to
A and so F is a ccc filter which does not support a measure.
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ccc filters and non-meager filters

Proposition

Every ccc filter is non-meager.

Theorem

A filter F is meager if and only if there is an interval partition (In) such
that for each infinite N we have

⋃
n∈N In /∈ Fc .

Proposition

There is a non-meager filter which is not ccc.
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Hierarchy of filters

Corollary

ultra =⇒ supporting measure =⇒ ccc =⇒ non-meager.
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Filters and forcing

We will force with a complete Boolean algebra A. Let G be an A-generic.
By U̇ we will denote an A-name for an non-principal ultrafilter in
P(ω) ∩ V [G ].

Example

Suppose U̇ is such that 1 ⊩ U̇ is non-principal. Then 1 ⊩ U̇ extends the
filter consisting of co-finite subsets of ω.

Example

Consider the forcing with P(ω)/fin. This forcing adds generically an
ultrafilter. Consider the name

U̇ = {⟨A,A⟩ : A ∈ P(ω)/fin}.

A generic ’reads’ this name as an ultrafilter on P(ω). Notice that if
A ∈ P(ω)∩V is a co-infinite set, then Ac ⊩ A /∈ U̇ . So, there is no ground
model filter F bigger than the Frechet filter for which 1 ⊩ U̇ extends F .
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Filters and forcing

Theorem

Let U̇ be as above. There exists a filter F on ω in V such that:
• 1 ⊩ U̇ extends F ,
• there exists an injective Boolean homomorphism
ψ : P(ω)/F → A.

Corollary

If A is ccc , then every ultrafilter from P(ω) ∩ V [G ] extends a ccc filter F
from the ground model.

Corollary

If B is the random forcing and G is a B-generic, then every ultrafilter from
V [G ] extends a measure supporting filter F from ground model.
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Filters and forcing

Proposition

For an A-name U̇ for an ultrafilter let ϕ : P(ω) → A be defined by
ϕ(A) = JA ∈ U̇K. Then ϕ is a Boolean homomorphism.

Proof of the theorem

Let ϕ be the homomorphism promised by the above proposition.
Let

F = {F ∈ P(ω) ∩ V : ϕ(F ) = 1}.

Notice that F is a filter on ω (as ϕ is a Boolean homomorphism).

Claim. 1 ⊩ U̇ extends F .

Indeed, if ϕ(F ) = 1, then JF ∈ U̇K = 1 and so 1 ⊩ F ∈ U̇ .
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Filters and forcing

Claim. There exists an injective Boolean homomorphism

ψ : P(ω)/F → A.

Define ψ : P(ω)/F → A by

ψ([A]F ) = ϕ(A).

Since ϕ is homomorphism we only have to check that ψ is well defined and
it is injective.
• ψ is well defined
Take A,B such that [A]F = [B]F . Then A∆B ∈ ker(ϕ), so
ϕ(A∆B) = 0. Hence ϕ(A)∆ϕ(B) = 0, so ψ([A]F ) = ψ([B]F ).

• ψ is injective
Take [A]F , [B]F , such that [A]F ̸= [B]F , then A∆B /∈ ker(ϕ)
so ϕ(A)∆ϕ(B) ̸= 0. Hence ψ([A]F ) ̸= ψ([B]F ).
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